

Virtual Design Review 5

Flight Simulator Egress System

Introduction

Team Leader Frank Cullen **Design Engineer** Andrew Filiault Research Engineer Andrew Porter

Financial Advisor Daniel Swope Historian Marco Karay

Project Background

- Sponsor: Lockheed Martin
- The purpose of this project is to support pilot training through the design of a system to improve the way pilots get in and out of F-16 cockpit simulators.

Figure 1: A Lockheed Martin F-16 in flight. (Lockheed Martin, n.d)

Andrew Porter

Project Scope

- System must move users ranging from 5 foot to 6 foot 2 inches tall in and out of cockpit dome
- Must position user in exact orientation of current fixed cockpit seat
- Allows user to egress in case of emergency
- Produce functional prototype in under \$2000

Figure 2: Existing cockpit dome design.

Andrew Porter

Design Constraints

First Semester Milestones

- Created functional decomposition
 - Provided basis for major design decisions
 - Used to extract major design goals of project

Andrew Porter

First Semester Milestones Cont.

- Using Pugh matrix, selected a rail mounted, motor powered, belt driven system
- Created rough detailed design of selected concept

Figure 4: Fall Semester Concept.

Andrew Porter

Summary of Initial Design

- Custom steel rail and roller system
- ➤2 HP AC motor with belt drive
 - AC controller
 - AC power supply
- Mechanical locking system
 - "Break Away" would physically break the pin

Project Design

➢ Frank Cullen

Frank Cullen

Redefined Design

- After Winter Break and beginning of fall, realized our initial design was overbudget and out of scope
- Simplification was needed:
 - Electric powered system is not necessary
 - "In house machined" rails may save money, but increase complexity
 - Mechanical locking systems rely on ideal circumstance

Frank Cullen

Transition to a Manual System

- Factors that influenced this transition
 - Cost
 - Outside of our Project Scope
 - Convenience w/ Emergency Situations
- Main components of our human powered system:
 - Linear Rail System w/ Mounting Carriages
 - Locking System

Frank Cullen

Carrier Selection

- Selected CPC ball-type linear guide system
 - Friction Coefficient: 0.004
 - 2 lbs. of force to move seat
 - Price: \$780
 - (39% of budget)
 - Lead Time: 1 Week

Figure 5: CPC linear ball carrier and rail.

Frank Cullen

Locking Mechanism Design

Challenges

- Limited space proved difficult to design under seat
- Emergency situation's require immediate response

Solutions

- AC electromagnet mounted to cockpit base outside of seat track
- Calibrate "break away" force without need to actually break the lock

Figure 6: Electromagnet position with seat in fully extended position.

Electromagnet Lock Design

- Electromagnet will interface with ferritic steel plate
- > Two variables control locking force
 - Distance from plate to magnet
 - Thickness of plate

Building and Testing of Prototype

➢Andrew Filiault

Electromagnet Calibration

Tested Electromagnet Specifications

Table 1: Electromagnet Specifications

Voltage	120 V AC
Wattage	14 W
Maximum Pull	180 lbs.
Maximum Temp	100°F

Found max pull for 5 different thicknesses of steel

- 0.125", 0.1875", 0.25", 0.375", 0.50" [inch]
- Data analysis performed in MATLAB to acquire desired pull force

Andrew Filiault

Electromagnet Testing

Figure 9: Electromagnet test rig concept (left) and model (right).

Andrew Filiault

Electromagnet Results

Function relating thickness to the max pull is a 4th degree polynomial

$$f(x) = ax^4 + bx^3 + cx^2 + dx + e$$

Thickness needed to hit target max pull(110lbf) is approximately 0.16 inches

Figure 10: Electromagnet Test Results.

Final Deliverable

- Demonstrate proof of concept
 - Fully functional protoype with working guide and lock systems
 - Wooden mockup of F-16 simulator
 - Simulate pilot and chair with a 500lb payload

Figure 11: Wood mockup of the gurney and cockpit base.

Andrew Filiault

Method of Rail Mounting

- The length of the rails are approx. 7 ft each
- Tolerancing for carriage system and to ensure minimal friction special care went into mounting them
- By mounting one rail first and attaching mounting plate the second rail will be mounted in the appropriate location

Andrew Filiault

Mounting Steps

Andrew Filiault

Additional Deliverables

- Additional belt-driven design for future implementation by Lockheed Martin that was out of scope of the project
- Complete CAD assembly for Lockheed Martin's system

Figure 13: CAD model of the cockpit base and gurney.

Acknowledgments

- Thank you to Lockheed Martin for their sponsorship
- Thank you to Jeff Payne, Robert Kenney, and Ken Clonts of Lockheed Martin for their guidance and direction
- Thank you to Dr. Hollis for his expertise on our project

LOCKHEED MARTIN

Andrew Filiault

Questions?

